

Sirindhorn International Institute of Technology Thammasat University

School of Information, Computer and Communication Technology

ECS452 2014/1 Part I.3 Dr.Prapun

2.4 (Shannon) Entropy for Discrete Random Variables

Entropy is a measure of uncertainty of a random variable [3, p 13].

Entropy quantifies/measures the amount of uncertainty a

RV

It arises as the answer to a number of natural questions. One such question that will be important for us is "What is the average length of the shortest *description* of the random variable?"

Definition 2.41. The entropy H(X) of a discrete random variable X is Recall: log2a = In a defined by

 $|o_{2,1} = O \qquad H(X) = -\sum_{x \in \mathcal{X}} p_X(x) \log_2 p_X(x) = -\mathbb{E}\left[\log_2 p_X(X)\right].$

IE[g[x]] = Z Px(x)g(x) In this case, g(x) = -log_2 Px(x)

- The log is to the base 2 and entropy is expressed in bits (per symbol).
 - The base of the logarithm used in defining H can be chosen to be any convenient real number b > 1 but if $b \neq 2$ the unit will not be in bits. hartley [Itart]
 - If the base of the logarithm is $\frac{10}{e}$, the entropy is measured in nats.

= 0

- Unless otherwise specified, base 2 is our default base.
- Based on continuity arguments, we shall assume that $0 \ln 0 = 0$. ²⁰ $\lim_{\sigma \epsilon \to 0} x = \lim_{\kappa \to 0} \frac{\lim_{\kappa \to 0} \frac{1}{\kappa} = \lim_{\kappa \to 0} \frac{1/\kappa}{1/\kappa} = \lim_{\kappa \to 0} \frac{1/\kappa}{1/\kappa} = \lim_{\kappa \to 0} \frac{1}{\kappa} = \frac{1}{\kappa} = \frac{1}{\kappa}$

Back then, the probability value, are $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{8}$ Example 2.42. The entropy of the random variable X in Example 2.31 is 1.75 bits (per symbol). $-\frac{1}{2}\log_2 \frac{1}{2}$, $-\frac{1}{4}\log_2 \frac{1}{4}$, $-\frac{1}{8}\log_2 \frac{1}{8}$, $-\frac{1$

 $H(x) = -\frac{1}{2}\log_2 \frac{1}{2} - \frac{1}{2}\log_2 \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = 1$ bit (1996) **2.44.** Note that entropy is a functional of the pmf of X. It does not depend on the actual values taken by the random variable X, but only on the (unordered) probabilities. Therefore, sometimes, we write $H(p_X)$ instead of H(X) to emphasize this fact. Moreover, because we use only the

 p_X and simply express the entropy as H(p).

In MATLAB, to calculate H(X), we may define a row vector **pX** from the pmf p_X . Then, the value of the entropy is given by $\mathbf{z}_{\mathbf{x}}$

probability values, we can use the row vector representation p of the pmf

$$HX = -pX*(log2(pX))'.$$

 $\rightarrow \alpha = (\cdot \cdot \cdot \cdot)$

Example 2.45. The entropy of a uniform (discrete) random variable X on $\{1, 2, 3, \ldots, n\}$:

$$P_{\mathbf{x}}(\mathbf{x}) = \begin{cases} 1/n, & \mathbf{x} = 1, 2, .., n, \\ 0, & \text{otherwise.} \end{cases}$$

$$= -n \times \frac{1}{n} \log_2 \frac{1}{n} = \log_2 n$$

$$Alternatively$$

$$H(\mathbf{x}) = -IE\left[\log_2 p_{\mathbf{x}}(\mathbf{x})\right] = -IE\left[\log_2 \frac{1}{n}\right]$$

$$= -\log_2 \frac{1}{n} = \log_2 n$$

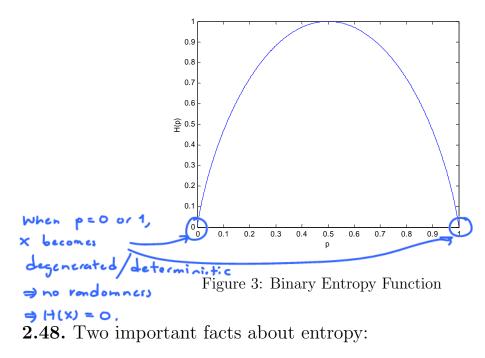
Example 2.46. The entropy of a Bernoulli random variable *X*:

$$p_{x}(m) = \begin{cases} p, & m = 1, \\ 1-p, & m = 0, \\ 0, & otherwise \end{cases}$$
 $H(x) = -p \log_2 p - (1-p) \log_2 (1-p)$

Binary RV

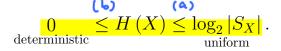
$$P_{X}(n) = \begin{cases} P, & n = a, \\ 1-P, & n = b, \\ 0, & \text{otherwise.} \end{cases}$$

Definition 2.47. Binary Entropy Function : We define $h_b(p)$, h(p) or H(p) to be $-p \log p - (1-p) \log (1-p)$, whose plot is shown in Figure 3.



- (a) $H(X) \leq \log_2 |S_X|$ with equality if and only if X is a uniform random variable.
- (b) $H(X) \ge 0$ with equality if and only if X is not random.

In summary,



Theorem 2.49. The expected length $\mathbb{E}[\ell(X)]$ of any uniquely decodable binary code for a random variable X is greater than or equal to the entropy H(X); that is,

$$\mathbb{E}\left[\ell(X)\right] \ge H(X)$$

with equality if and only if $2^{-\ell(x)} = p_X(x)$. [3, Thm. 5.3.1]

Definition 2.50. Let L(c, X) be the expected codeword length when random variable X is encoded by code c.

Let $L^*(X)$ be the minimum possible expected codeword length when random variable X is encoded by a uniquely decodable code c:

$$L^*(X) = \min_{\text{UD } c} L(c, X).$$

2.51. Given a random variable X, let c_{Huffman} be the Huffman code for this X. Then, from the optimality of Huffman code mentioned in 2.37,

 $L^*(X) = L(c_{\text{Huffman}}, X).$

Theorem 2.52. The optimal code for a random variable X has an expected length less than H(X) + 1:

$$L^{*}(X) < H(X) + 1.$$
true for Huttman
2.53. Combining Theorem 2.49 and Theorem 2.52, we have
true for
$$H(X) \leq L^{*}(X) < H(X) + 1.$$
(3)

Definition 2.54. Let $L_n^*(X)$ be the minimum expected codeword length per symbol when the random variable X is encoded with *n*-th extension uniquely decodable coding. Of course, this can be achieve by using *n*-th extension Huffman coding.

2.55. An extension of (3):

$$H(X) \le L_n^*(X) < H(X) + \frac{1}{n}.$$
 (4)

In particular,

$$\lim_{n \to \infty} L_n^*(X) = H(X).$$

In otherwords, by using large block length, we can achieve an expected length per source symbol that is arbitrarily close to the value of the entropy.

2.56. Operational meaning of entropy: Entropy of a random variable is the average length of its shortest description.

2.57. References

- Section 16.1 in Carlson and Crilly [2]
- Chapters 2 and 5 in Cover and Thomas [3]
- Chapter 4 in Fine [4]
- Chapter 14 in Johnson, Sethares, and Klein [6]
- Section 11.2 in Ziemer and Tranter [16]