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2.4 (Shannon) Entropy for Discrete Random Variables

Entropy is a measure of uncertainty of a random variable [3, p 13].

It arises as the answer to a number of natural questions. One such
question that will be important for us is “What is the average length of the
shortest description of the random variable?”

Definition 2.41. The entropy H(X) of a discrete random variable X is
defined by

H (X) = −
∑
x∈SX

pX (x) log2 pX (x) = −E [log2 pX (X)] .

• The log is to the base 2 and entropy is expressed in bits (per symbol).

◦ The base of the logarithm used in defining H can be chosen to be
any convenient real number b > 1 but if b 6= 2 the unit will not be
in bits.

◦ If the base of the logarithm is e, the entropy is measured in nats.

◦ Unless otherwise specified, base 2 is our default base.

• Based on continuity arguments, we shall assume that 0 ln 0 = 0.
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Example 2.42. The entropy of the random variable X in Example 2.31 is
1.75 bits (per symbol).

Example 2.43. The entropy of a fair coin toss is 1 bit (per toss).

2.44. Note that entropy is a functional of the pmf of X. It does not
depend on the actual values taken by the random variable X, but only
on the (unordered) probabilities. Therefore, sometimes, we write H(pX)
instead of H(X) to emphasize this fact. Moreover, because we use only the
probability values, we can use the row vector representation p of the pmf
pX and simply express the entropy as H(p).

In MATLAB, to calculate H(X), we may define a row vector pX from
the pmf pX . Then, the value of the entropy is given by

HX = -pX*(log2(pX))’.

Example 2.45. The entropy of a uniform (discrete) random variable X on
{1, 2, 3, . . . , n}:

Example 2.46. The entropy of a Bernoulli random variable X:
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Definition 2.47. Binary Entropy Function : We define hb(p), h (p) or
H(p) to be −p log p− (1− p) log (1− p), whose plot is shown in Figure 3.
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• Logarithmic Bounds: ( )( ) ( ) ( ) ( )(1ln ln log ln ln
ln 2

p q e H p p q≤ ≤ )  
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• Power-type bounds: ( )( ) ( ) ( ) ( )( )
1

ln 4ln 2 4 log ln 2 4pq e H p pq≤ ≤  
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Entropy for two random variables 

• For two random variables X and Y with a joint pmf ( ),p x y  and marginal pmf  p(x) and p(y). 

Figure 3: Binary Entropy Function

2.48. Two important facts about entropy:

(a) H (X) ≤ log2 |SX | with equality if and only if X is a uniform random
variable.

(b) H (X) ≥ 0 with equality if and only if X is not random.

In summary,

0
deterministic

≤ H (X) ≤ log2 |SX |
uniform

.

Theorem 2.49. The expected length E [`(X)] of any uniquely decodable
binary code for a random variable X is greater than or equal to the entropy
H(X); that is,

E [`(X)] ≥ H(X)

with equality if and only if 2−`(x) = pX(x). [3, Thm. 5.3.1]

Definition 2.50. Let L(c,X) be the expected codeword length when ran-
dom variable X is encoded by code c.

Let L∗(X) be the minimum possible expected codeword length when
random variable X is encoded by a uniquely decodable code c:

L∗(X) = min
UD c

L(c,X).
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2.51. Given a random variable X, let cHuffman be the Huffman code for this
X. Then, from the optimality of Huffman code mentioned in 2.37,

L∗(X) = L(cHuffman, X).

Theorem 2.52. The optimal code for a random variable X has an expected
length less than H(X) + 1:

L∗(X) < H(X) + 1.

2.53. Combining Theorem 2.49 and Theorem 2.52, we have

H(X) ≤ L∗(X) < H(X) + 1. (3)

Definition 2.54. Let L∗n(X) be the minimum expected codeword length
per symbol when the random variable X is encoded with n-th extension
uniquely decodable coding. Of course, this can be achieve by using n-th
extension Huffman coding.

2.55. An extension of (3):

H(X) ≤ L∗n(X) < H(X) +
1

n
. (4)

In particular,
lim
n→∞

L∗n(X) = H(X).

In otherwords, by using large block length, we can achieve an expected
length per source symbol that is arbitrarily close to the value of the entropy.

2.56. Operational meaning of entropy: Entropy of a random variable is the
average length of its shortest description.
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